二进制数组

  二进制数组(ArrayBuffer对象、TypedArray视图和DataView视图)是javascript操作二进制数据的一个接口。这些对象早就存在,属于独立的规格(2011年2月发布),ES6将它们纳入了ECMAScript规格,并且增加了新的方法。本文将详细介绍二进制数组

 

引入

  二进制数组的原始设计目的,与WebGL项目有关。所谓WebGL,就是指浏览器与显卡之间的通信接口,为了满足javascript与显卡之间大量的、实时的数据交换,它们之间的数据通信必须是二进制的,而不能是传统的文本格式。文本格式传递一个32位整数,两端的javascript脚本与显卡都要进行格式转化,将非常耗时。这时要是存在一种机制,可以像C语言那样,直接操作字节,将4个字节的32位整数,以二进制形式原封不动地送入显卡,脚本的性能就会大幅提升

  二进制数组就是在这种背景下诞生的。它很像C语言的数组,允许开发者以数组下标的形式,直接操作内存,大大增强了javascript处理二进制数据的能力,使得开发者有可能通过javascript与操作系统的原生接口进行二进制通信

  二进制数组由三类对象组成

  1、ArrayBuffer对象:代表内存之中的一段二进制数据,可以通过“视图”进行操作。“视图”部署了数组接口,这意味着,可以用数组的方法操作内存

  2、TypedArray(类型化数组):共包括9种类型的类型化数组,比如Uint8Array(无符号8位整数)数组,Int16Array(16位整数)数组,Float32Array(32位浮点数)数组等等

  3、DataView(数据视图):可以自定义复合格式的视图,比如第一个字节是Uint8(无符号8位整数)、第二、三个字节是Int16(16位整数)、第四个字节开始是Float32(32位浮点数)等等,此外还可以自定义字节序

  简单说,ArrayBuffer对象代表原始的二进制数据,TypedArray(类型化数组)用来读写简单类型的二进制数据,DataView(数据视图)用来读写复杂类型的二进制数据

  [注意]二进制数组并不是真正的数组,而是类数组对象

  很多浏览器操作的API,用到了二进制数组操作二进制数据,比如:File API、XMLHttpRequest、Fetch API、Canvas、WebSockets

 

ArrayBuffer

  ArrayBuffer对象代表储存二进制数据的一段内存,它不能直接读写,只能通过TypedArray(类型化数组)和DataView(数据视图)以指定格式解读二进制数据

  [注意]IE9-浏览器不支持

  ArrayBuffer是一个构造函数,可以分配一段可以存放数据的连续内存区域。参数length表示要创建的数组缓冲区的大小,即所需要的内存大小(以字节为单位)。最终返回一个新的拥有指定大小的ArrayBuffer对象。它的内容都被初始化为0

new ArrayBuffer(length)

  下面代码生成了一段32字节的内存区域,为了读写这段内容,需要为它指定视图。比如DataView数据视图,它的创建,需要提供ArrayBuffer对象实例作为参数。代码对一段32字节的内存,建立DataView视图,然后以不带符号的8位整数格式,读取第一个元素,结果得到0,因为原始内存的ArrayBuffer对象,默认所有位都是0

var buf = new ArrayBuffer(32);
var dataView = new DataView(buf);
dataView.getUint8(0) // 0

  另一种TypedArray视图(类型化数组),与DataView数据视图的一个区别是,它不是一个构造函数,而是一组构造函数,代表不同的数据格式

var buffer = new ArrayBuffer(12);
var x1 = new Int32Array(buffer);
x1[0] = 1;
var x2 = new Uint8Array(buffer);
x2[0] = 2;
x1[0] // 2

  上面代码对同一段内存,分别建立两种视图:32位带符号整数(Int32Array构造函数)和8位不带符号整数(Uint8Array构造函数)。由于两个视图对应的是同一段内存,一个视图修改底层内存,会影响到另一个视图

  TypedArray视图(类型化数组)的构造函数,除了接受ArrayBuffer实例作为参数,还可以接受普通数组作为参数,直接分配内存生成底层的ArrayBuffer实例,并同时完成对这段内存的赋值

var typedArray = new Uint8Array([0,1,2]);
typedArray.length // 3
typedArray[0] = 5;
typedArray // [5, 1, 2]

  上面代码使用TypedArray视图的Uint8Array构造函数,新建一个不带符号的8位整数视图。可以看到,Uint8Array直接使用普通数组作为参数,对底层内存的赋值同时完成

【ArrayBuffer.prototype.byteLength】

  ArrayBuffer实例的byteLength属性,返回所分配的内存区域的字节长度

var buffer = new ArrayBuffer(32);
buffer.byteLength// 32

  如果分配的内存区域很大,有可能分配失败(因为没有那么多连续空余内存),所以有必要检查是否分配成功

if (buffer.byteLength === n) {
// 成功
} else {
// 失败
}

【ArrayBuffer.prototype.slice()】

  ArrayBuffer实例有一个slice方法,允许将内存区域的一部分,拷贝生成一个新的ArrayBuffer对象

var buffer = new ArrayBuffer(8);
var newBuffer = buffer.slice(0, 3);

  上面代码拷贝buffer对象的前3个字节(从0开始,到第3个字节前面结束),生成一个新的ArrayBuffer对象。slice方法其实包含两步,第一步是先分配一段新内存,第二步是将原来那个ArrayBuffer对象拷贝过去

  slice方法接受两个参数,第一个参数表示拷贝开始的字节序号(含该字节),第二个参数表示拷贝截止的字节序号(不含该字节)。如果省略第二个参数,则默认到原ArrayBuffer对象的结尾

  除了slice(),ArrayBuffer对象不提供任何直接读写内存的方法,只允许在其上建立视图,然后通过视图读写

【ArrayBuffer.isView()】

  ArrayBuffer有一个静态方法isView,返回一个布尔值,表示参数是否为ArrayBuffer的视图实例。这个方法大致相当于判断参数,是否为TypedArray实例或DataView实例

var buffer = new ArrayBuffer(8);
ArrayBuffer.isView(buffer) // false
var v = new Int32Array(buffer);
ArrayBuffer.isView(v) // true

 

类型化数组

  ArrayBuffer对象作为内存区域,可以存放多种类型的数据。同一段内存,不同数据有不同的解读方式,这就叫做“视图”(view)。ArrayBuffer有两种视图,一种是TypedArray视图,又翻译为类型化数组。另一种是DataView视图,又翻译为数据视图。前者的数组成员都是同一个数据类型,后者的数组成员可以是不同的数据类型

  目前,TypedArray视图(类型化数组)一共包括9种类型,每一种视图都是一种构造函数

数据类型   字节长度   含义                             对应的C语言类型

Int8       1        8位带符号整数                      signed char
Uint8      1        8位不带符号整数                    unsigned char
Uint8C     1        8位不带符号整数(自动过滤溢出)        unsigned char
Int16      2        16位带符号整数                     short
Uint16     2        16位不带符号整数                   unsigned short
Int32      4        32位带符号整数                     int
Uint32     4        32位不带符号的整数                  unsigned int
Float32    4        32位浮点数                         float
Float64    8        64位浮点数                         double

  这9个构造函数生成的数组,统称为TypedArray视图(类型化数组)。它们很像普通数组,都有length属性,都能用方括号运算符([])获取单个元素,所有数组的方法,在它们上面都能使用。普通数组与TypedArray数组的差异主要在以下方面

  1、TypedArray数组的所有成员,都是同一种类型

  2、TypedArray数组的成员是连续的,不会有空位

  3、TypedArray数组成员的默认值为0。比如,new Array(10)返回一个普通数组,里面没有任何成员,只是10个空位;new Uint8Array(10)返回一个TypedArray数组,里面10个成员都是0

  4、TypedArray数组只是一层视图,本身不储存数据,它的数据都储存在底层的ArrayBuffer对象之中,要获取底层对象必须使用buffer属性

【构造函数】

  TypedArray数组提供9种构造函数,用来生成相应类型的数组实例

  构造函数有多种用法

  1、TypedArray(buffer [, byteOffset [, length]])

  该构造函数可以接受三个参数:第一个参数(必需):视图对应的底层ArrayBuffer对象;第二个参数(可选):视图开始的字节序号,默认从0开始;第三个参数(可选):视图包含的数据个数,默认直到本段内存区域结束

  同一个ArrayBuffer对象之上,可以根据不同的数据类型,建立多个视图

// 创建一个8字节的ArrayBuffer
var b = new ArrayBuffer(8);
// 创建一个指向b的Int32视图,开始于字节0,直到缓冲区的末尾
var v1 = new Int32Array(b);
// 创建一个指向b的Uint8视图,开始于字节2,直到缓冲区的末尾
var v2 = new Uint8Array(b, 2);
// 创建一个指向b的Int16视图,开始于字节2,长度为2
var v3 = new Int16Array(b, 2, 2);

  上面代码在一段长度为8个字节的内存(b)之上,生成了三个视图:v1、v2和v3。因此,v1、v2和v3是重叠的:v1[0]是一个32位整数,指向字节0~字节3;v2[0]是一个8位无符号整数,指向字节2;v3[0]是一个16位整数,指向字节2~字节3。只要任何一个视图对内存有所修改,就会在另外两个视图上反应出来

  [注意]byteOffset必须与所要建立的数据类型一致,否则会报错

var buffer = new ArrayBuffer(8);
var i16 = new Int16Array(buffer, 1);
// Uncaught RangeError: start offset of Int16Array should be a multiple of 2

  上面代码中,新生成一个8个字节的ArrayBuffer对象,然后在这个对象的第一个字节,建立带符号的16位整数视图,结果报错。因为,带符号的16位整数需要两个字节,所以byteOffset参数必须能够被2整除

  如果想从任意字节开始解读ArrayBuffer对象,必须使用DataView视图(数据视图),因为TypedArray视图只提供9种固定的解读格式

  2、TypedArray(length)

  视图还可以不通过ArrayBuffer对象,直接分配内存而生成

var f64a = new Float64Array(8);
f64a[0] = 10;
f64a[1] = 20;
f64a[2] = f64a[0] + f64a[1];

  上面代码生成一个8个成员的Float64Array数组(共64字节),然后依次对每个成员赋值。这时,视图构造函数的参数就是成员的个数。可以看到,视图数组的赋值操作与普通数组的操作毫无两样

  3、TypedArray(typedArray)

  TypedArray数组的构造函数,可以接受另一个TypedArray实例作为参数

var typedArray = new Int8Array(new Uint8Array(4));

  上面代码中,Int8Array构造函数接受一个Uint8Array实例作为参数。

  [注意]此时生成的新数组,只是复制了参数数组的值,对应的底层内存是不一样的。新数组会开辟一段新的内存储存数据,不会在原数组的内存之上建立视图

var x = new Int8Array([1, 1]);
var y = new Int8Array(x);
x[0] // 1
y[0] // 1

x[0] = 2;
y[0] // 1

  上面代码中,数组y是以数组x为模板而生成的,当x变动的时候,y并没有变动。

  如果想基于同一段内存,构造不同的视图,可以采用下面的写法

var x = new Int8Array([1, 1]);
var y = new Int8Array(x.buffer);
x[0] // 1
y[0] // 1

x[0] = 2;
y[0] // 2

  4、TypedArray(arrayLikeObject)

  构造函数的参数也可以是一个普通数组,然后直接生成TypedArray实例

var typedArray = new Uint8Array([1, 2, 3, 4]);

  [注意]这时TypedArray视图会重新开辟内存,不会在原数组的内存上建立视图

  上面代码从一个普通的数组,生成一个8位无符号整数的TypedArray实例

  TypedArray数组也可以转换回普通数组

var normalArray = Array.prototype.slice.call(typedArray);

【静态属性和方法】

BYTES_PER_ELEMENT

  BYTES_PER_ELEMENT属性代表了强类型数组中每个元素所占用的字节数

Int8Array.BYTES_PER_ELEMENT; // 1
Uint8Array.BYTES_PER_ELEMENT; // 1
Uint8ClampedArray.BYTES_PER_ELEMENT; // 1
Int16Array.BYTES_PER_ELEMENT; // 2
Uint16Array.BYTES_PER_ELEMENT; // 2
Int32Array.BYTES_PER_ELEMENT; // 4
Uint32Array.BYTES_PER_ELEMENT; // 4
Float32Array.BYTES_PER_ELEMENT; // 4
Float64Array.BYTES_PER_ELEMENT; // 8

name

  name属性是描述类型数组构造名的字符串值

Int8Array.name; // "Int8Array"
Uint8Array.name; // "Uint8Array"
Uint8ClampedArray.name; // "Uint8ClampedArray"
Int16Array.name; // "Int16Array"
Uint16Array.name; // "Uint16Array"
Int32Array.name; // "Int32Array"
Uint32Array.name; // "Uint32Array"
Float32Array.name; // "Float32Array"
Float64Array.name; // "Float64Array"

of()

  静态方法TypedArray.of()用于将参数转为一个TypedArray实例

Float32Array.of(0.151, -8, 3.7)
// Float32Array [ 0.151, -8, 3.7 ]

  下面三种方法都会生成同样一个TypedArray数组

// 方法一
let tarr = new Uint8Array([1,2,3]);

// 方法二
let tarr = Uint8Array.of(1,2,3);

// 方法三
let tarr = new Uint8Array(3);
tarr[0] = 1;
tarr[1] = 2;
tarr[2] = 3;

from()

  静态方法TypedArray.from()接受一个可遍历的数据结构(比如数组)作为参数,返回一个基于这个结构的TypedArray实例

Uint16Array.from([0, 1, 2])
// Uint16Array [ 0, 1, 2 ]

  这个方法还可以将一种TypedArray实例,转为另一种

var ui16 = Uint16Array.from(Uint8Array.of(0, 1, 2));
ui16 instanceof Uint16Array // true

  from方法还可以接受一个函数,作为第二个参数,用来对每个元素进行遍历,功能类似map方法。

Int8Array.of(127, 126, 125).map(x => 2 * x)
// Int8Array [ -2, -4, -6 ]

Int16Array.from(Int8Array.of(127, 126, 125), x => 2 * x)
// Int16Array [ 254, 252, 250 ]

  上面的例子中,from方法没有发生溢出,这说明遍历不是针对原来的8位整数数组。也就是说,from会将第一个参数指定的TypedArray数组,拷贝到另一段内存之中,处理之后再将结果转成指定的数组格式

【字节序】

  字节序指的是数值在内存中的表示方式

var buffer = new ArrayBuffer(16);
var int32View = new Int32Array(buffer);
for (var i = 0; i < int32View.length; i++) {
    int32View[i] = i * 2;
}

  上面代码生成一个16字节的ArrayBuffer对象,然后在它的基础上,建立了一个32位整数的视图。由于每个32位整数占据4个字节,所以一共可以写入4个整数,依次为0,2,4,6

  如果在这段数据上接着建立一个16位整数的视图,则可以读出完全不一样的结果

var int16View = new Int16Array(buffer);
for (var i = 0; i < int16View.length; i++) {
console.log("Entry " + i + ": " + int16View[i]);
}
// Entry 0: 0
// Entry 1: 0
// Entry 2: 2
// Entry 3: 0
// Entry 4: 4
// Entry 5: 0
// Entry 6: 6
// Entry 7: 0

  由于每个16位整数占据2个字节,所以整个ArrayBuffer对象现在分成8段。然后,由于x86体系的计算机都采用小端字节序(little endian),相对重要的字节排在后面的内存地址,相对不重要字节排在前面的内存地址,所以就得到了上面的结果

  比如,一个占据四个字节的16进制数0x12345678,决定其大小的最重要的字节是“12”,最不重要的是“78”。小端字节序将最不重要的字节排在前面,储存顺序就是78563412;大端字节序则完全相反,将最重要的字节排在前面,储存顺序就是12345678。目前,所有个人电脑几乎都是小端字节序,所以TypedArray数组内部也采用小端字节序读写数据,或者更准确的说,按照本机操作系统设定的字节序读写数据

  这并不意味大端字节序不重要,事实上,很多网络设备和特定的操作系统采用的是大端字节序。这就带来一个严重的问题:如果一段数据是大端字节序,TypedArray数组将无法正确解析,因为它只能处理小端字节序!为了解决这个问题,javascript引入DataView对象,可以设定字节序,下文会详细介绍

  下面是另一个例子

// 假定某段buffer包含如下字节 [0x02, 0x01, 0x03, 0x07]
var buffer = new ArrayBuffer(4);
var v1 = new Uint8Array(buffer);
v1[0] = 2;
v1[1] = 1;
v1[2] = 3;
v1[3] = 7;
var uInt16View = new Uint16Array(buffer);
// 计算机采用小端字节序
// 所以头两个字节等于258
if (uInt16View[0] === 258) {
    console.log('OK'); // "OK"
}
// 赋值运算
uInt16View[0] = 255; // 字节变为[0xFF, 0x00, 0x03, 0x07]
uInt16View[0] = 0xff05; // 字节变为[0x05, 0xFF, 0x03, 0x07]
uInt16View[1] = 0x0210; // 字节变为[0x05, 0xFF, 0x10, 0x02]

  下面的函数可以用来判断,当前视图是小端字节序,还是大端字节序

const BIG_ENDIAN = Symbol('BIG_ENDIAN');
const LITTLE_ENDIAN = Symbol('LITTLE_ENDIAN');
function getPlatformEndianness() {
    let arr32 = Uint32Array.of(0x12345678);
    let arr8 = new Uint8Array(arr32.buffer);
    switch ((arr8[0]*0x1000000) + (arr8[1]*0x10000) + (arr8[2]*0x100) + (arr8[3])) {
    case 0x12345678:
    return BIG_ENDIAN;
    case 0x78563412:
    return LITTLE_ENDIAN;
    default:
        throw new Error('Unknown endianness');
    }
}

  总之,与普通数组相比,TypedArray数组的最大优点就是可以直接操作内存,不需要数据类型转换,所以速度快得多

【ArrayBuffer与字符串的互相转换】

  ArrayBuffer转为字符串,或者字符串转为ArrayBuffer,有一个前提,即字符串的编码方法是确定的。假定字符串采用UTF-16编码(javascript的内部编码方式),可以自己编写转换函数

// ArrayBuffer转为字符串,参数为ArrayBuffer对象
function ab2str(buf) {
return String.fromCharCode.apply(null, new Uint16Array(buf));
}
// 字符串转为ArrayBuffer对象,参数为字符串
function str2ab(str) {
    var buf = new ArrayBuffer(str.length * 2); // 每个字符占用2个字节
    var bufView = new Uint16Array(buf);
    for (var i = 0, strLen = str.length; i < strLen; i++) {
        bufView[i] = str.charCodeAt(i);
    }
    return buf;
}

【溢出】

  不同的视图类型,所能容纳的数值范围是确定的。超出这个范围,就会出现溢出。比如,8位视图只能容纳一个8位的二进制值,如果放入一个9位的值,就会溢出

  TypedArray数组的溢出处理规则,简单来说,就是抛弃溢出的位,然后按照视图类型进行解释

var uint8 = new Uint8Array(1);
uint8[0] = 256;
uint8[0] // 0
uint8[0] = -1;
uint8[0] // 255

  上面代码中,uint8是一个8位视图,而256的二进制形式是一个9位的值100000000,这时就会发生溢出。根据规则,只会保留后8位,即00000000。uint8视图的解释规则是无符号的8位整数,所以00000000就是0

  负数在计算机内部采用“2的补码”表示,也就是说,将对应的正数值进行否运算,然后加1。比如,-1对应的正值是1,进行否运算以后,得到11111110,再加上1就是补码形式11111111。uint8按照无符号的8位整数解释11111111,返回结果就是255。

  一个简单转换规则,可以这样表示

  正向溢出(overflow):当输入值大于当前数据类型的最大值,结果等于当前数据类型的最小值加上余值,再减去1

  负向溢出(underflow):当输入值小于当前数据类型的最小值,结果等于当前数据类型的最大值减去余值,再加上1

  上面的“余值”就是模运算的结果,即 javascript 里面的%运算符的结果

12 % 4 // 0
12 % 5 // 2

  上面代码中,12除以4是没有余值的,而除以5会得到余值2

var int8 = new Int8Array(1);
int8[0] = 128;
int8[0] // -128
int8[0] = -129;
int8[0] // 127

  上面例子中,int8是一个带符号的8位整数视图,它的最大值是127,最小值是-128。输入值为128时,相当于正向溢出1,根据“最小值加上余值(128除以127的余值是1),再减去1”的规则,就会返回-128;输入值为-129时,相当于负向溢出1,根据“最大值减去余值(-129除以-128的余值是1),再加上1”的规则,就会返回127。

  Uint8ClampedArray视图的溢出规则,与上面的规则不同。它规定,凡是发生正向溢出,该值一律等于当前数据类型的最大值,即255;如果发生负向溢出,该值一律等于当前数据类型的最小值,即0。

var uint8c = new Uint8ClampedArray(1);
uint8c[0] = 256;
uint8c[0] // 255
uint8c[0] = -1;
uint8c[0] // 0

  上面例子中,uint8C是一个Uint8ClampedArray视图,正向溢出时都返回255,负向溢出都返回0

【实例属性和方法】

  普通数组的操作方法和属性,对TypedArray数组完全适用

  [注意]TypedArray数组没有concat方法。如果想要合并多个TypedArray数组,可以用下面这个函数

function concatenate(resultConstructor, ...arrays) {
    let totalLength = 0;
    for (let arr of arrays) {
        totalLength += arr.length;
    }
    let result = new resultConstructor(totalLength);
    let offset = 0;
    for (let arr of arrays) {
        result.set(arr, offset);
    offset += arr.length;
    }
    return result;
}
concatenate(Uint8Array, Uint8Array.of(1, 2), Uint8Array.of(3, 4))
// Uint8Array [1, 2, 3, 4]

TypedArray.prototype.buffer

  TypedArray实例的buffer属性,返回整段内存区域对应的ArrayBuffer对象。该属性为只读属性

var a = new Float32Array(64);
var b = new Uint8Array(a.buffer);

  上面代码的a视图对象和b视图对象,对应同一个ArrayBuffer对象,即同一段内存

TypedArray.prototype.byteLength,TypedArray.prototype.byteOffset

  byteLength属性返回TypedArray数组占据的内存长度,单位为字节。byteOffset属性返回TypedArray数组从底层ArrayBuffer对象的哪个字节开始。这两个属性都是只读属性

  以v3为例进行说明,Int16Array数组中每一个数据占据两个字节,如果分派到8字节的内存中,可以放置4个数据。由于有2个字节的偏移,所以内存只剩余6个字节,所以可以放置3个数据。第三个参数表示只放置2个数据,则最终v3只放置两个数据,每个数据占据两个字节,所以v3数组的byteLength为2*2=4

var b = new ArrayBuffer(8);
var v1 = new Int32Array(b);
var v2 = new Uint8Array(b, 2);
var v3 = new Int16Array(b, 2, 2);
v1.byteLength // 8
v2.byteLength // 6
v3.byteLength // 4
v1.byteOffset // 0
v2.byteOffset // 2
v3.byteOffset // 2

TypedArray.prototype.length

  length属性表示TypedArray数组含有多少个成员。注意将byteLength属性和length属性区分,前者是字节长度,后者是成员长度

var a = new Int16Array(8);
a.length // 8
a.byteLength // 16

TypedArray.prototype.set()

  TypedArray数组的set方法用于复制数组(普通数组或TypedArray数组),也就是将一段内容完全复制到另一段内存

var a = new Uint8Array(8);
var b = new Uint8Array(8);
b.set(a);

  上面代码复制a数组的内容到b数组,它是整段内存的复制,比一个个拷贝成员的那种复制快得多

  set方法还可以接受第二个参数,表示从b对象的哪一个成员开始复制a对象

var a = new Uint16Array(8);
var b = new Uint16Array(10);
b.set(a, 2);

  上面代码的b数组比a数组多两个成员,所以从b[2]开始复制

TypedArray.prototype.subarray()

  subarray方法是对于TypedArray数组的一部分,再建立一个新的视图

var a = new Uint16Array(8);
var b = a.subarray(2,3);
a.byteLength // 16
b.byteLength // 2

  subarray方法的第一个参数是起始的成员序号,第二个参数是结束的成员序号(不含该成员),如果省略则包含剩余的全部成员。所以,上面代码的a.subarray(2,3),意味着b只包含a[2]一个成员,字节长度为2

TypedArray.prototype.slice()

  TypeArray实例的slice方法,可以返回一个指定位置的新的TypedArray实例

let ui8 = Uint8Array.of(0, 1, 2);
ui8.slice(-1)// Uint8Array [ 2 ]

  上面代码中,ui8是8位无符号整数数组视图的一个实例。它的slice方法可以从当前视图之中,返回一个新的视图实例

  slice方法的参数,表示原数组的具体位置,开始生成新数组。负值表示逆向的位置,即-1为倒数第一个位置,-2表示倒数第二个位置,以此类推

 

复合视图

  由于视图的构造函数可以指定起始位置和长度,所以在同一段内存之中,可以依次存放不同类型的数据,这叫做“复合视图”

var buffer = new ArrayBuffer(24);

var idView = new Uint32Array(buffer, 0, 1);
var usernameView = new Uint8Array(buffer, 4, 16);
var amountDueView = new Float32Array(buffer, 20, 1);

  上面代码将一个24字节长度的ArrayBuffer对象,分成三个部分:

  字节0到字节3:1个32位无符号整数

  字节4到字节19:16个8位整数

  字节20到字节23:1个32位浮点数

  这种数据结构可以用如下的C语言描述:

struct someStruct {
unsigned long id;
char username[16];
float amountDue;
};

 

数据视图

  如果一段数据包括多种类型(比如服务器传来的HTTP数据),这时除了建立ArrayBuffer对象的复合视图以外,还可以通过DataView视图进行操作

  DataView视图提供更多操作选项,而且支持设定字节序。本来,在设计目的上,ArrayBuffer对象的各种TypedArray视图,是用来向网卡、声卡之类的本机设备传送数据,所以使用本机的字节序就可以了;而DataView视图的设计目的,是用来处理网络设备传来的数据,所以大端字节序或小端字节序是可以自行设定的

  DataView视图本身也是构造函数,接受一个ArrayBuffer对象作为参数,生成视图

DataView(ArrayBuffer buffer [, 字节起始位置 [, 长度]]);
var buffer = new ArrayBuffer(24);
var dv = new DataView(buffer);

  DataView实例有以下属性,含义与TypedArray实例的同名方法相同

DataView.prototype.buffer:返回对应的ArrayBuffer对象
DataView.prototype.byteLength:返回占据的内存字节长度
DataView.prototype.byteOffset:返回当前视图从对应的ArrayBuffer对象的哪个字节开始

  DataView实例提供8个方法读取内存

getInt8:读取1个字节,返回一个8位整数
getUint8:读取1个字节,返回一个无符号的8位整数
getInt16:读取2个字节,返回一个16位整数
getUint16:读取2个字节,返回一个无符号的16位整数
getInt32:读取4个字节,返回一个32位整数
getUint32:读取4个字节,返回一个无符号的32位整数
getFloat32:读取4个字节,返回一个32位浮点数
getFloat64:读取8个字节,返回一个64位浮点数

  这一系列get方法的参数都是一个字节序号(不能是负数,否则会报错),表示从哪个字节开始读取

var buffer = new ArrayBuffer(24);
var dv = new DataView(buffer);
// 从第1个字节读取一个8位无符号整数
var v1 = dv.getUint8(0);
// 从第2个字节读取一个16位无符号整数
var v2 = dv.getUint16(1);
// 从第4个字节读取一个16位无符号整数
var v3 = dv.getUint16(3);

  上面代码读取了ArrayBuffer对象的前5个字节,其中有一个8位整数和两个十六位整数。

  如果一次读取两个或两个以上字节,就必须明确数据的存储方式,到底是小端字节序还是大端字节序。默认情况下,DataView的get方法使用大端字节序解读数据,如果需要使用小端字节序解读,必须在get方法的第二个参数指定true

// 小端字节序
var v1 = dv.getUint16(1, true);
// 大端字节序
var v2 = dv.getUint16(3, false);
// 大端字节序
var v3 = dv.getUint16(3);

  DataView视图提供8个方法写入内存

setInt8:写入1个字节的8位整数
setUint8:写入1个字节的8位无符号整数
setInt16:写入2个字节的16位整数
setUint16:写入2个字节的16位无符号整数
setInt32:写入4个字节的32位整数
setUint32:写入4个字节的32位无符号整数
setFloat32:写入4个字节的32位浮点数
setFloat64:写入8个字节的64位浮点数

  这一系列set方法,接受两个参数,第一个参数是字节序号,表示从哪个字节开始写入,第二个参数为写入的数据。对于那些写入两个或两个以上字节的方法,需要指定第三个参数,false或者undefined表示使用大端字节序写入,true表示使用小端字节序写入

// 在第1个字节,以大端字节序写入值为25的32位整数
dv.setInt32(0, 25, false);
// 在第5个字节,以大端字节序写入值为25的32位整数
dv.setInt32(4, 25);
// 在第9个字节,以小端字节序写入值为2.5的32位浮点数
dv.setFloat32(8, 2.5, true);

  如果不确定正在使用的计算机的字节序,可以采用下面的判断方式

var littleEndian = (function() {
    var buffer = new ArrayBuffer(2);
    new DataView(buffer).setInt16(0, 256, true);
    return new Int16Array(buffer)[0] === 256;
})();

  如果返回true,就是小端字节序;如果返回false,就是大端字节序

results matching ""

    No results matching ""